GAMMA KNIFE: TREATMENT PLATFORM, QA, AND TREATMENT UNCERTAINTY

Dan McDonald, MS
Assistant Professor, Medical University of South Carolina

DISCLOSURES

- No conflicts of interest to disclose
OUTLINE

- Calibration and commissioning
- Treatment prep and image acquisition
 - How do I determine imaging modality?
 - What potential sources of error arise due to imaging?
- Treatment planning and delivery
- QA
- Sources of uncertainty
- Gamma Knife ICON
- SAMS

Gamma Knife Program

- 1st GK patient treated January 2010
- 2 physicists, 2 neurosurgeons (1 primary), 4 radiation oncologists (1 primary)
- Source reload August 2014
Gamma Knife Program

- Over 1500 treatments provided to date
- 273 in 2016
- Wide range of indications
 - Metastatic disease
 - Surgical cavity
 - Primary malignant brain tumor
 - Acoustic neuroma
 - Meningioma
 - Trigeminal neuralgia
 - AVM
 - Glomus tumor
 - Essential tremor

Calibration and Commissioning

- Single output measurement required for commissioning!
- No clear guidelines on calibration methodology
- McDonald et al in Med Phys: *Calibration of the Gamma Knife Perfexion using TG-21 and the Solid Water Leksell Dosimetry Phantom*
 - TG-21 using solid water phantom + A14SL ionization chamber
- Verify Monte-Carlo-based output factors
TREATMENT PREPARATION

- Stereotactic frame-based system
- Neurosurgeon positions frame on morning of treatment
- Patient receives:
 - MRI and/or
 - CT and/or
 - Angiogram (AVM only)
- Each imaging modality has dedicated localizer
- At MUSC 90% of patients receive MRI only
- Typical sequences
 - T1 volume scan w/ gado (1mm slice)
 - T2 Drive (0.7mm slice)
 - Time-of-flight (0.7mm slice)

IMAGING AND LOCALIZATION

- Consider inherent MR distortion
 - Gradient non-linearity largest cause
 - Increases with distance from imaging center
 - Ensure vendor distortion correction is activated
 - Beware of outside MRs
 - Standard diagnostic QA/PMs may not be sufficient
 - ACR requires ± 2mm
 - Dedicated phantoms available to help quantify MR distortion
 - Pictured – Modus Medical Quasar Grid3D™
MR distortion due to Leksell frame

- E P Pappas in Physics in Med and Bio: *Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications*
 - GK frame base can introduce additional MR distortion
 - Up to 5mm adjacent to frame base
 - Distortion decreases with distance from frame base
 - Frame related distortion eliminated 9cm superior to base
 - Distortion reduced at center of coordinate space

Consider registration accuracy

- Kenneth Ulin in Int. Journal of Rad Onc Bio Phys: *Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration*
 - Graph result of benchmark study of CT/MRI cranial rigid registration
 - Average error found to be 1.8mm
 - Manual registration found to be more accurate than automatic

- MR distortion affects registration accuracy
IMAGING AND LOCALIZATION

- Consider GK skull measurement
 - “Bubble measurement” external contour
 - Generated by model
 - Fails to capture extreme/unusual head shapes
 - Fails to accurately represent surface below the cerebellum
 - Historically sufficient for older-model GKS
 - CT-based external contour
 - More accurate
 - Requires day-of-tx CT
 - Can represent surface below the cerebellum
- Patient anatomy and target location dictate need for CT-based contour

TREATMENT PLANNING

- MUSC procedure
 - Physicist imports and prepares images for planning
 - Definition of in-frame images
 - Registration of out-of-frame images
 - Creation of external (“skull”) contour
 - Neurosurgeon reviews registrations, contours tumor volumes and OARs
 - Physicist creates treatment plan
 - Radiation Oncologist determines prescription, reviews and approves plan
TREATMENT PLANNING

- Plans created by placing “shots”
- Each “shot” consists of:
 - Table position
 - Collimator selection
 - Weighting (time)
- 192 sources divided onto 8 movable plates
- Each plate can be positioned over the 4, 8, or 16mm collimator, or blocked completely
- Plates positioned independently (4^8 possible patterns per shot!)
- 3 head tilt positions (Gamma Angles) available
 - 70 (chin back), 90 (neutral), 110 (chin down)

TREATMENT DELIVERY

- Patient docked to treatment couch
- Treatment couch moves patient around fixed isocenter to create desired dose distribution
- Source plates simultaneously move 192 Co-60 sources over desired collimators
MACHİNE SPECIFICATIONS

- Available collimator sizes
 - 4, 8, 16mm – 8 independent source plates
- Radiological accuracy
 - <0.25mm
- Positioning accuracy
 - <0.20mm
- Number of radiation sources
 - 192
- Total activity at loading
 - 5100-6300Ci
- Max dose rate (16mm coll) at loading
 - >3Gy/min
- Treatment timer accuracy
 - <0.2%
- Couch weight limit
 - 500lbs

QUALİTY ASSURANCE

- Daily QA
 - Focus precision
 - Verification of radiation isocenter vs couch position
 - Automatic routine
 - Diode detector mounted to couch using clinical frame adapter
 - 4mm collimator used
 - 0.1mm tolerance
 - Emergency alarm
 - AV
 - Gamma angle sensor
 - Radiation survey
 - Interlocks (Door, Lt and Rt patient protection, frame docked)
 - Pause, emergency stop, door open
 - Radiation monitor and warning lights
QUALITY ASSURANCE

Monthly QA
- All daily checks +
- Ion-chamber output check
 - GK solid water phantom
 - A14SL ion-chamber
- Timer check

Annual QA
- All daily and monthly checks +
- Output factor verification
- Radiation isocenter centricity
 - X, Y, and Z directions
- Radiation profile vs baseline for each collimator
- All tests utilize Gafchromic film

Isocenter Centricity Check 16mm

<table>
<thead>
<tr>
<th></th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate In-Field Intensity Value:</td>
<td>5800</td>
</tr>
<tr>
<td>Use cursor to determine approximate intensity value in the flat portion of the delivered field. Exact value is not important.</td>
<td></td>
</tr>
<tr>
<td>Pin Prick Position:</td>
<td>1.626</td>
</tr>
<tr>
<td>Use cursor to determine the position of the center of the pin prick</td>
<td></td>
</tr>
<tr>
<td>50% Intensity Value:</td>
<td>2900</td>
</tr>
<tr>
<td>Left 50% Intensity Position:</td>
<td>0.3048</td>
</tr>
<tr>
<td>Left 50% Intensity Value:</td>
<td>2285</td>
</tr>
<tr>
<td>Distance to Pin Prick - Left:</td>
<td>1.32</td>
</tr>
<tr>
<td>Use cursor to determine position and intensity value on the left side of the profile. Choose the position closest to the calculated 50% intensity value.</td>
<td></td>
</tr>
<tr>
<td>Right 50% Intensity Position:</td>
<td>2.848</td>
</tr>
<tr>
<td>Right 50% Intensity Value:</td>
<td>2962</td>
</tr>
<tr>
<td>Distance to Pin Prick - Right:</td>
<td>1.32</td>
</tr>
<tr>
<td>Use cursor to determine position and intensity value on the left side of the profile. Choose the position closest to the calculated 50% intensity value.</td>
<td></td>
</tr>
<tr>
<td>Distance Difference:</td>
<td>0.00</td>
</tr>
<tr>
<td>Tolerance (mm):</td>
<td>0.05</td>
</tr>
<tr>
<td>Pass?:</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Profile Comparison

- Annual vs Baseline

Treatment Uncertainties

- **Mechanical performance of treatment unit**
 - Daily verification of radiation iso vs couch position
 - Couch position sensors stop tx at >0.1mm deviation
 - Plate motion and collimator design minimize opportunity for wear and error
 - Positioning accuracy guaranteed through service contract and verified during bi-annual PM
 - Novotny et al in Med Phys: *Long-term stability of the Leksell Gamma Knife® Perfexion™ patient positioning system (PPS).*
 - Measurements collected over 4 years
 - Average deviations 0.1mm or less
TREATMENT UNCERTAINTIES

- **Frame integrity**
 - Once images are obtained, frame placement is assumed to be invariant
 - Improper frame placement could lead to frame shift which may not be caught prior to treatment
 - **Experienced neurosurgeon extremely important**
 - Frame assembly
 - Frame position
 - Pin entry angle
 - Pin pressure
 - Patient history
 - If in doubt – re-image!

- **Uncertainty due to image distortion or registration**
 - MR distortion always present
 - Increases with distance from imaging isocenter
 - Increased near GK frame
 - CT/MR registration introduces error
 - Carefully verify automatic registration results
 - Consider MR distortion during registration
 - Avoid focusing on areas of known MR distortion
GAMMA KNIFE ICON

- Newest Gamma Knife platform
- Perfexion body with added CBCT
- Includes infrared tracking for frameless treatment
- May:
 - Expand GK use to include more fractionated treatments due to frameless tracking
 - Allow for quick verification of frame integrity prior to treatment for traditional patients
 - Track frame integrity throughout treatment with infrared system

REFERENCES

SAM QUESTION 1

Uncertainty during treatment on the Gamma Knife Perfexion is predominantly due to:

- Mechanical performance of the treatment machine
- MLC positioning error
- Frame integrity and planning image registrations and distortions
- Machine output fluctuation

References

SAM QUESTION 2

- **MR Distortion Due to the GK Frame Base is:**
 - Minimal compared to distortion already inherent in MR imaging
 - Significant adjacent to the frame base, decreasing as distance from the frame base increases
 - Corrected during the localization process
 - Minimal compared to mechanical uncertainty of the treatment unit

SAM QUESTION 2

- **MR Distortion Due to the GK Frame Base is:**
 - Significant adjacent to the frame base, decreasing as distance from the frame base increases

References